Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root zone soil moisture from the assimilation of screen‐level variables and remotely sensed soil moisture

Identifieur interne : 006336 ( Main/Exploration ); précédent : 006335; suivant : 006337

Root zone soil moisture from the assimilation of screen‐level variables and remotely sensed soil moisture

Auteurs : C. S. Draper [France, Australie] ; J. Mahfouf [France] ; J. P. Walker [Australie]

Source :

RBID : ISTEX:16011955114E2CF2B7121D2EF08FF7EF94F6BD81

Descripteurs français

English descriptors

Abstract

In most operational NWP models, root zone soil moisture is constrained using observations of screen‐level temperature and relative humidity. While this generally improves low‐level atmospheric forecasts, it often leads to unrealistic model soil moisture. Consequently, several NWP centers are moving toward also assimilating remotely sensed near‐surface soil moisture observations. Within this context, an EKF is used to compare the assimilation of screen‐level observations and near‐surface soil moisture data from AMSR‐E into the ISBA land surface model over July 2006. Several issues regarding the use of each data type are exposed, and the potential to use the AMSR‐E data, either in place of or together with the screen‐level data, is examined. When the two data types are assimilated separately, there is little agreement between the root zone soil moisture updates generated by each, indicating that for this experiment the AMSR‐E data could not have replaced the screen‐level data to obtain similar surface turbulent fluxes. For the screen‐level variables, there is a persistent diurnal cycle in the model‐observations bias, which is not related to soil moisture. The resulting diurnal cycle in the analysis increments demonstrates how assimilating screen‐level observations can lead to unrealistic soil moisture updates, reinforcing the need to assimilate alternative data sets. However, when the two data types are assimilated together, the near‐surface soil moisture provides a much weaker constraint of the root zone soil moisture than the screen‐level observations do, and the inclusion of the AMSR‐E data does not substantially change the results compared to the assimilation of screen‐level variables alone.

Url:
DOI: 10.1029/2010JD013829


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Root zone soil moisture from the assimilation of screen‐level variables and remotely sensed soil moisture</title>
<author>
<name sortKey="Draper, C S" sort="Draper, C S" uniqKey="Draper C" first="C. S." last="Draper">C. S. Draper</name>
</author>
<author>
<name sortKey="Mahfouf, J" sort="Mahfouf, J" uniqKey="Mahfouf J" first="J." last="Mahfouf">J. Mahfouf</name>
</author>
<author>
<name sortKey="Walker, J P" sort="Walker, J P" uniqKey="Walker J" first="J. P." last="Walker">J. P. Walker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:16011955114E2CF2B7121D2EF08FF7EF94F6BD81</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2010JD013829</idno>
<idno type="url">https://api.istex.fr/document/16011955114E2CF2B7121D2EF08FF7EF94F6BD81/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000420</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000420</idno>
<idno type="wicri:Area/Istex/Curation">000420</idno>
<idno type="wicri:Area/Istex/Checkpoint">000755</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000755</idno>
<idno type="wicri:doubleKey">0148-0227:2011:Draper C:root:zone:soil</idno>
<idno type="wicri:Area/Main/Merge">006712</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:11-0169610</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001E71</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004066</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001699</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001699</idno>
<idno type="wicri:doubleKey">0148-0227:2011:Draper C:root:zone:soil</idno>
<idno type="wicri:Area/Main/Merge">006B50</idno>
<idno type="wicri:Area/Main/Curation">006336</idno>
<idno type="wicri:Area/Main/Exploration">006336</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Root zone soil moisture from the assimilation of screen‐level variables and remotely sensed soil moisture</title>
<author>
<name sortKey="Draper, C S" sort="Draper, C S" uniqKey="Draper C" first="C. S." last="Draper">C. S. Draper</name>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Melbourne, Melbourne, Victoria</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Now at GAME, CNRM, Météo‐France/CNRS, Toulouse</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author>
<name sortKey="Mahfouf, J" sort="Mahfouf, J" uniqKey="Mahfouf J" first="J." last="Mahfouf">J. Mahfouf</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>GAME, CNRM, Météo‐France/CNRS, Toulouse</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walker, J P" sort="Walker, J P" uniqKey="Walker J" first="J. P." last="Walker">J. P. Walker</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Melbourne, Melbourne, Victoria</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Now at Department of Civil Engineering, Monash University, Clayton, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">116</biblScope>
<biblScope unit="issue">D2</biblScope>
<biblScope unit="page-count">13</biblScope>
<date type="published" when="2011-01-27">2011-01-27</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absolute difference</term>
<term>Additional experiment</term>
<term>Aladin</term>
<term>Analysis increments</term>
<term>Analysis updates</term>
<term>Assimilation</term>
<term>Assimilation cycles</term>
<term>Assimilation experiments</term>
<term>Assimilation results</term>
<term>Assimilation table</term>
<term>Assimilation window</term>
<term>Atmospheric forecasts</term>
<term>Background error</term>
<term>Balsamo</term>
<term>Bare soil</term>
<term>Bare soil evaporation</term>
<term>Bias</term>
<term>Bias correction</term>
<term>Calvet</term>
<term>Capillary rise</term>
<term>Civil engineering</term>
<term>Considerable spread</term>
<term>Daily assimilation cycles</term>
<term>Daily forecast</term>
<term>Data sets</term>
<term>Data type</term>
<term>Data types</term>
<term>Deep root zone</term>
<term>Diurnal biases</term>
<term>Diurnal cycle</term>
<term>Douville</term>
<term>Draper</term>
<term>Early morning</term>
<term>Ecmwf model</term>
<term>Error variance</term>
<term>Field capacity</term>
<term>Finite differences</term>
<term>Forecast</term>
<term>Forecast system</term>
<term>Geophys</term>
<term>Global coverage</term>
<term>Gravitational drainage</term>
<term>Ground surface</term>
<term>Hess</term>
<term>Ieee trans</term>
<term>Increment</term>
<term>Indirect link</term>
<term>Information content</term>
<term>Isba</term>
<term>Isba land surface scheme</term>
<term>Isba model</term>
<term>Jacobians</term>
<term>July</term>
<term>Land surface analysis</term>
<term>Land surface assimilation</term>
<term>Land surface model</term>
<term>Level observations</term>
<term>Little agreement</term>
<term>Mahfouf</term>
<term>Meteorol</term>
<term>Microwave</term>
<term>Microwave radiometry</term>
<term>Microwave scanning radiometer</term>
<term>Model background</term>
<term>Model climatology</term>
<term>Model domain</term>
<term>Model errors</term>
<term>Model forecast</term>
<term>Model forecasts</term>
<term>Model grid</term>
<term>Model root zone soil moisture</term>
<term>Moist model bias</term>
<term>Moisture</term>
<term>Monash university</term>
<term>Monthly increments</term>
<term>Negative mode</term>
<term>Noilhan</term>
<term>Numerical forecast</term>
<term>Observation</term>
<term>Observation bias</term>
<term>Observation error</term>
<term>Observation errors</term>
<term>Observation increment</term>
<term>Observation increments</term>
<term>Observation operator</term>
<term>Observation operator jacobians</term>
<term>Observation operators</term>
<term>Observation type</term>
<term>Observations increments</term>
<term>Ocean salinity</term>
<term>Open loop simulation</term>
<term>Perturbed model simulations</term>
<term>Positive increments</term>
<term>Relative humidity</term>
<term>Relative information content</term>
<term>Remote sens</term>
<term>Rh2m</term>
<term>Rh2m rmsd</term>
<term>Rmsd</term>
<term>Root zone</term>
<term>Root zone soil moisture</term>
<term>Satellite observation</term>
<term>Seasonal cycle</term>
<term>Small impact</term>
<term>Soil layer</term>
<term>Soil moisture</term>
<term>Soil moisture analyses</term>
<term>Soil moisture analysis</term>
<term>Soil moisture data</term>
<term>Soil moisture observations</term>
<term>Soil moisture profile</term>
<term>Soil moisture retrieval</term>
<term>Soil moisture updates</term>
<term>Soil parameters</term>
<term>Space remote sensing</term>
<term>Square error estimates</term>
<term>Standard deviation</term>
<term>Strong tendency</term>
<term>Strongest relationship</term>
<term>Surface analysis</term>
<term>Surface soil layer</term>
<term>Surface soil moisture</term>
<term>Surface temperature</term>
<term>Systematic differences</term>
<term>Systematic errors</term>
<term>Time scale</term>
<term>Total depth</term>
<term>Total soil depth</term>
<term>Turbulent transfer</term>
<term>Update</term>
<term>Variance</term>
<term>Volumetric error</term>
<term>Weather forecast</term>
<term>assimilation</term>
<term>diurnal variations</term>
<term>experimental studies</term>
<term>inclusions</term>
<term>lead</term>
<term>models</term>
<term>soil moisture</term>
<term>temperature</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Assimilation</term>
<term>Erreur systématique</term>
<term>Etude expérimentale</term>
<term>Humidité relative</term>
<term>Humidité sol</term>
<term>Inclusion</term>
<term>Modèle</term>
<term>Observation par satellite</term>
<term>Plomb</term>
<term>Prévision météorologique</term>
<term>Prévision numérique</term>
<term>Radiométrie hyperfréquence</term>
<term>Surface sol</term>
<term>Température</term>
<term>Transfert turbulent</term>
<term>Télédétection spatiale</term>
<term>Variation diurne</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute difference</term>
<term>Additional experiment</term>
<term>Aladin</term>
<term>Analysis increments</term>
<term>Analysis updates</term>
<term>Assimilation</term>
<term>Assimilation cycles</term>
<term>Assimilation experiments</term>
<term>Assimilation results</term>
<term>Assimilation table</term>
<term>Assimilation window</term>
<term>Atmospheric forecasts</term>
<term>Background error</term>
<term>Balsamo</term>
<term>Bare soil</term>
<term>Bare soil evaporation</term>
<term>Bias</term>
<term>Bias correction</term>
<term>Calvet</term>
<term>Capillary rise</term>
<term>Civil engineering</term>
<term>Considerable spread</term>
<term>Daily assimilation cycles</term>
<term>Daily forecast</term>
<term>Data sets</term>
<term>Data type</term>
<term>Data types</term>
<term>Deep root zone</term>
<term>Diurnal biases</term>
<term>Diurnal cycle</term>
<term>Douville</term>
<term>Draper</term>
<term>Early morning</term>
<term>Ecmwf model</term>
<term>Error variance</term>
<term>Field capacity</term>
<term>Finite differences</term>
<term>Forecast</term>
<term>Forecast system</term>
<term>Geophys</term>
<term>Global coverage</term>
<term>Gravitational drainage</term>
<term>Hess</term>
<term>Ieee trans</term>
<term>Increment</term>
<term>Indirect link</term>
<term>Information content</term>
<term>Isba</term>
<term>Isba land surface scheme</term>
<term>Isba model</term>
<term>Jacobians</term>
<term>July</term>
<term>Land surface analysis</term>
<term>Land surface assimilation</term>
<term>Land surface model</term>
<term>Level observations</term>
<term>Little agreement</term>
<term>Mahfouf</term>
<term>Meteorol</term>
<term>Microwave</term>
<term>Microwave scanning radiometer</term>
<term>Model background</term>
<term>Model climatology</term>
<term>Model domain</term>
<term>Model errors</term>
<term>Model forecast</term>
<term>Model forecasts</term>
<term>Model grid</term>
<term>Model root zone soil moisture</term>
<term>Moist model bias</term>
<term>Moisture</term>
<term>Monash university</term>
<term>Monthly increments</term>
<term>Negative mode</term>
<term>Noilhan</term>
<term>Observation</term>
<term>Observation bias</term>
<term>Observation error</term>
<term>Observation errors</term>
<term>Observation increment</term>
<term>Observation increments</term>
<term>Observation operator</term>
<term>Observation operator jacobians</term>
<term>Observation operators</term>
<term>Observation type</term>
<term>Observations increments</term>
<term>Ocean salinity</term>
<term>Open loop simulation</term>
<term>Perturbed model simulations</term>
<term>Positive increments</term>
<term>Relative humidity</term>
<term>Relative information content</term>
<term>Remote sens</term>
<term>Rh2m</term>
<term>Rh2m rmsd</term>
<term>Rmsd</term>
<term>Root zone</term>
<term>Root zone soil moisture</term>
<term>Seasonal cycle</term>
<term>Small impact</term>
<term>Soil layer</term>
<term>Soil moisture</term>
<term>Soil moisture analyses</term>
<term>Soil moisture analysis</term>
<term>Soil moisture data</term>
<term>Soil moisture observations</term>
<term>Soil moisture profile</term>
<term>Soil moisture retrieval</term>
<term>Soil moisture updates</term>
<term>Soil parameters</term>
<term>Square error estimates</term>
<term>Standard deviation</term>
<term>Strong tendency</term>
<term>Strongest relationship</term>
<term>Surface analysis</term>
<term>Surface soil layer</term>
<term>Surface soil moisture</term>
<term>Surface temperature</term>
<term>Systematic differences</term>
<term>Systematic errors</term>
<term>Time scale</term>
<term>Total depth</term>
<term>Total soil depth</term>
<term>Update</term>
<term>Variance</term>
<term>Volumetric error</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Génie civil</term>
<term>Observation</term>
<term>Plomb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">In most operational NWP models, root zone soil moisture is constrained using observations of screen‐level temperature and relative humidity. While this generally improves low‐level atmospheric forecasts, it often leads to unrealistic model soil moisture. Consequently, several NWP centers are moving toward also assimilating remotely sensed near‐surface soil moisture observations. Within this context, an EKF is used to compare the assimilation of screen‐level observations and near‐surface soil moisture data from AMSR‐E into the ISBA land surface model over July 2006. Several issues regarding the use of each data type are exposed, and the potential to use the AMSR‐E data, either in place of or together with the screen‐level data, is examined. When the two data types are assimilated separately, there is little agreement between the root zone soil moisture updates generated by each, indicating that for this experiment the AMSR‐E data could not have replaced the screen‐level data to obtain similar surface turbulent fluxes. For the screen‐level variables, there is a persistent diurnal cycle in the model‐observations bias, which is not related to soil moisture. The resulting diurnal cycle in the analysis increments demonstrates how assimilating screen‐level observations can lead to unrealistic soil moisture updates, reinforcing the need to assimilate alternative data sets. However, when the two data types are assimilated together, the near‐surface soil moisture provides a much weaker constraint of the root zone soil moisture than the screen‐level observations do, and the inclusion of the AMSR‐E data does not substantially change the results compared to the assimilation of screen‐level variables alone.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
<li>Toulouse</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Draper, C S" sort="Draper, C S" uniqKey="Draper C" first="C. S." last="Draper">C. S. Draper</name>
</noRegion>
<name sortKey="Draper, C S" sort="Draper, C S" uniqKey="Draper C" first="C. S." last="Draper">C. S. Draper</name>
<name sortKey="Draper, C S" sort="Draper, C S" uniqKey="Draper C" first="C. S." last="Draper">C. S. Draper</name>
<name sortKey="Mahfouf, J" sort="Mahfouf, J" uniqKey="Mahfouf J" first="J." last="Mahfouf">J. Mahfouf</name>
</country>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Draper, C S" sort="Draper, C S" uniqKey="Draper C" first="C. S." last="Draper">C. S. Draper</name>
</region>
<name sortKey="Walker, J P" sort="Walker, J P" uniqKey="Walker J" first="J. P." last="Walker">J. P. Walker</name>
<name sortKey="Walker, J P" sort="Walker, J P" uniqKey="Walker J" first="J. P." last="Walker">J. P. Walker</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006336 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 006336 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:16011955114E2CF2B7121D2EF08FF7EF94F6BD81
   |texte=   Root zone soil moisture from the assimilation of screen‐level variables and remotely sensed soil moisture
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024